ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Systems @ ETH ziricn

Master’s Thesis Nr. 50

Systems Group, Department of Computer Science, ETH Zurich

in collaboration with

Proteus Project, Courant Institute of Mathematical Sciences, New York University

Analysis of German Patent Literature

by

Luciano Franceschina
Supervised by

Prof. Donald Kossmann (ETH)
Prof. Ralph Grishman (NYU)

February 2012 - August 2012

- , (7
Inf Informatik NEW YORK UNIVERSITY

Computer Science

Analysis of German Patent Literature

Luciano Franceschina
ETH Zirich
lucianof@student.ethz.ch

August 2012

Abstract

We show how several components of the JET natural language analysis tool,
originally developed at New York University for the analysis of English text, were
adapted to German. These components, such as the part of speech tagger and
the noun chunker, are explained in terms that should be understandable to a
layman. On the other hand, issues that arise specifically with regards to the
German language are outlined in a way that could be of interest to people more
experienced in natural language processing.

Acknowledgements

First, I would like to thank the members of the Proteus Project, and especially
Prof. Ralph Grishman, for the opportunity to write my Master’s thesis in this
research group and the support they offered me during my stay at NYU.

I also want to thank Sandra Kiibler (Department of Linguistics, Indiana Uni-
versity) for providing us with a chunk corpus derived from the German TiBa-D/Z
treebank using the conversion strategy described in her paper [10] .

Research reported herein was supported in part by the Intelligence Advanced
Research Projects Activity (IARPA) of the U.S. Government via Department of
Interior National Business Center contract number D11PC20154. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation thereon. Disclaimer: The views
and conclusions contained herein are those of the author and should not be in-
terpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of TARPA, Dol /NBC, or the U.S. Government.

Contents

1 Introduction
1.1 Java Extraction Toolkit (JET)

1.2 Relation extraction from patents.

1.3 Overview.

2 Part of speech tagging
2.1 Hidden Markov Model
2.2 Corpus selection

2.3 German and English parts-of-speech

2.4 Implementation details
2.4.1 Word features
2.4.2 Afhix statistics
2.4.3 Tag conversion

25 Results.

3 Chunking
3.1 The JET chunking component
3.2 German chunks
3.3 Tag conversion

34 Results.

4 Patents
4.1 Processing of patent documents

5 Terminology extraction
6 Hearst patterns
7 Conclusion and Future work

A The STTS tag set

12
12
13
13
14

16
16

18

19

21

24

B Example of terminology and hearst patterns extracted from a

patent 26
B.1 Patent text (excerpt) 26
B.2 Terminology (excerpt) 26
B.3 Hearst patterns 27

Chapter 1

Introduction

In this report we describe the steps taken to adapt several components of a Java-
based language analysis tool from English to German. In doing so we illustrate
relevant linguistic differences between the two languages and discuss implementa-
tion details. Finally we will also present metrics and compare the performance of
the German components to state-of-the-art systems. Specifically, components for
part-of-speech tagging, chunking, as well as pattern and terminology extraction
were adapted and developed for German.

The work was done within the context of a project to extract selected semantic
relationships from the patent literature in English, German, and Chinese.

In the following two sections we introduce the tool and the project in greater
detail and give an overview of this document.

1.1 Java Extraction Toolkit (JET)

The Java Extraction Toolkit (JET) is developed at NYU by members of the Pro-
teus Project. JET includes components for a multitude of language analysis tasks
- part-of-speech tagging, chunking, parsing, pattern application and more. These
components can be accessed interactively via a GUI for the analysis of single sen-
tences as well as in batch-mode, where several documents are analyzed in one
run.

All components operate on the central Document class that contains text as
well as a set of annotations of a document that are associated with a specific span
of the document. The text is stored as an immutable string and annotations are
accessed by their offset from the start of the string. The different components
add and modify annotations, but never modify the text. Most components build
upon each other and read annotations from lower level components. The first,
basic component is the Tokenizer, which identifies separate words and annotates

each word with a token annotation. Other components, such as the part of speech
tagger (see chapter 2) or the chunker (see chapter 3) build upon this and add
more information about the document structure in form of annotations. This
architecture is based on the "Tipster Architecture’ [6].

1.2 Relation extraction from patents

As part of a larger effort at tracking developing technologies, we seek to extract
some of the semantic relationships expressed in the text of English, German, and
Chinese patents. The Jet system already provides a rich set of tools for English
text analysis, mostly corpus-trained. We decided therefore to adapt some of these
tools to German and train them using annotated German corpora. Specifically,
we intend to identify instances of these relationships by matching a set of patterns
(regular expressions) involving specific words, parts of speech, and some basic
syntactic constituents (“chunks”).

1.3 Overview

This document describes the components adapted and developed for the analysis
of German patents. It follows the same order as the stages of language processing:
in chapter 2 the part of speech tagger is introduced, in chapter 3 the chunker.
Chapter 4 is a short intermezzo, in which we look at the challenges we have to deal
with when analyzing patents. Finally, chapter 5 and 6 introduce the terminology
extraction and Hearst pattern components, respectively.

Chapter 2

Part of speech tagging

Part of speech tagging is the cornerstone of most language analysis tasks. Ulti-
mately, the goal of natural language processing is to get the machine to understand
certain aspects of the meaning of a text. In order to do that, it is necessary to
understand the building blocks of the text - the words. Identifying the part of
speech of a word is the first step in this direction.

2.1 Hidden Markov Model

Identifying a word’s part of speech would be trivial in a language with a finite set of
words, where every word form can be exactly one part of speech. Human languages
are not like that - the same word can belong to a different part of speech category
depending on the context, and new words are formed frequently. Therefore, in
order to assign a part of speech to a word we need a more complicated model of
the language than just a direct mapping of word to part of speech. The part of
speech tagger (POS tagger) of JET is based on a first-order Hidden Markov Model
(HMM). A HMM takes two sets of probabilities into account: transition probabili-
ties between hidden states and emission probabilities of observations given a state.
For POS tagging, states refer to the part of speech tags and the observations are
the words. We are therefore interested in these probabilities:

e The transition probabilities: The probability that one part of speech follows
another one. For example, the sequence article—noun is more likely to oc-
cur than article—verb. We need the probability of each possible transition
between two part of speech tags.

e The emission probabilities: The probability that given a part of speech, a
specific word is emitted. For example the probability that given a certain

word is an article, this word is "the". We need the probability of every word
for every part of speech tag.

Having these probabilities, and given a chain of words (i.e. a sentence) of which
we don’t know the parts of speech, it is possible to compute the most likely chain
of hidden states (i.e. part of speech tags) that generated this observation. We
assume that these are the parts of speech of the individual words of the sentence.
For a more thorough description of HMMs and the Viterbi algorithm to compute
the most likely sequence of hidden states we refer to [9].

2.2 Corpus selection

To obtain the necessary probabilities for our Hidden Markov Model, we train our
software on a tagged corpus; a corpus where for every word, a human annotator
has determined the correct part of speech tag. By counting the frequencies of the
transitions ("tag follows tag") and emissions ("word is tagged as"), we can estimate
the probabilities. The larger the corpus is, the better the estimate becomes. There
are currently three large corpora for written German |[15]:

e The TIGER corpus [1] of approximately 50,000 sentences taken from the Ger-
man newspaper 'Frankfurter Rundschau’ and developed by the Department
of Computational Linguistics and Phonetics in Saarbriicken, the Institute
of Natural Language Processing (IMS) in Stuttgart, and the Institut fiir
Germanistik in Potsdam.

e The older NEGRA corpus [2] of approximately 20,000 sentences, also taken
from the German newspaper ’Frankfurter Rundschau’ and developed at the
Saarland University in Saarbriicken and the IMS in Stuttgart.

e The TiiBa-D/Z corpus [17] (Tiibinger Baumbank des Deutschen / Zeitungsko-
rpus) of approximately 65,000 newspaper sentences taken from ’die tageszeitung’
(taz) and developed at the Seminar fiir Sprachwissenschaft at the Eberhard
Karls University, Tiibingen.

These corpora are also referred to as treebanks, because they are not just
annotated with part of speech tags, but with the whole syntactic tree structure of
the sentences. While the three treebanks slightly differ in their linguistic paradigms
concerning the syntactic trees [11], they all use the same tag set for parts of speech
- the Stuttgart-Tiibingen-TagSet (STTS) [16], which consists of 54 different tags.

For this project, we decided to use the TiiBa-D/Z corpus, as it is currently the
largest one and is actively maintained: TiiBa-D/Z Release 7, adding about 10’000
additional sentences to the treebank, was published in December 2011.

6

2.3 German and English parts-of-speech

The TiiBa-D/Z corpus is tagged with the standard STTS tag set, which consists of
54 tag types (see Appendix A). JET’s English POS tagger uses the Penn Treebank
tag set [12] with 36 POS tag types, plus 13 additional tag types for punctuation
and other special characters. Of the 54 tags in the ST'TS tag set, only three are
for punctuation and one for non-words. The German set of proper part of speech
tags is therefore considerably larger than the English one. For example, there are
12 tags for verbs in the German STTS, but only 6 in the Penn Treebank tag set.

2.4 Implementation details

In this section we discuss implementation details of the JET POS tagger in general,
and adjustments that have been made for German POS tagging specifically.

2.4.1 Word features

By computing the emission probabilities purely from the observed frequencies in
the training corpus, an unknown word (i.e. a word not present in the training
corpus) would be assigned a probability of 0 for being emitted by any state -
it would therefore not be possible to compute the most likely sequence of POS
tags for sentences containing an unknown word, as all possible sequences would
have probability 0. There are words that are only observed once in the training
corpus too, though. The relative frequency of these singletons is an estimate of the
probability for the observation of an unknown word. This gives us the probability
for each part of speech tag to emit an unknown word. For example, an unknown
word it is more probable to be a noun or an adjective than a pronoun.

In addition to this, the JET POS tagger also builds statistics on some word fea-
tures, in order to get a better estimate for the emission probability of an unknown
word. An unknown word’s emission probability for each POS tag is estimated
as the relative frequency of a singleton word times the relative frequency of the
word’s feature. The following word features are considered:

e allDigits: numbers

e allCaps: word in all capital letters

initCaps: word with one initial capital letter

lowerCase: word in all lowercase letters

hyphenated: word contains a hyphen

7

e other: none of the above
For the German POS tagger, we added the following word features:

e noAlphanumerics: word without letters or numbers
o digitsThenLetters: word starts with digits and ends with letters

e containsGe: word contains "ge"

Each of these additional word features slightly improves the performance of the
POS tagger. The feature digitsThenLetters is specifically useful for the recognition
of certain age-related adjectives, such as "38jahrig" (38 years old).

2.4.2 Afhix statistics

German is a morphologically richer language than English. In German, verbs
have up to 29 possibly different forms [4], while conjugated English regular verbs
only take three possible suffixes (-s, -ed, -ing). German nouns, pronouns and
adjectives are declined according to case, number and gender, while in English
in most cases declension is only necessary for pluralization. We therefore have
many more different word forms for a single word in German. This makes POS
tagging harder, because we have fewer observations in our training data of every
single form. On the other hand, inflection offers us some potential advantages:
by analyzing a word’s morphology, it is possible to obtain information about its
part of speech, e.g. in English a suffix of -ed or -ing might indicate a verb. A
full morphological analysis involves determining a word’s lemma (the canonical
form) and its inflection. Because in German inflection is mostly (but not always)
agglutinative, a word’s last letters often carry the inflectional information. For
example in the word Kindern, |Kind| is the lemma, |er| contains the plural, and
[n] the dative part.

The German POS tagger in JET does not perform a real morphological analy-
sis, but it keeps statistics of fixed-length affixes. For every word that is longer than
this fixed length L, its first, respectively last L characters are considered the pre-,
respectively suffix. The emission probability of a word is estimated as the product
of the relative frequency of the word and the relative frequency of its affixes. We
found that looking at prefixes of length 6 and suffixes of length 3 gives the best
results (see table 2.2). Considering just suffixes results in a larger improvement
of the performance than just considering prefixes. This is expected, as German
inflection mainly concerns suffixes. But we show that also keeping statistics over
prefixes improves the performance of POS tagging (see section 2.5). This can be
explained by the fact that some prefixes in German are typical for certain parts of

speech, such as ent- (entkommen, entfernen, entstehen,...) or ver- (verlieren, ve-
rachten, verschlafen,...) for verbs, and Un- (Unfall, Unachtsamkeit, Unglaube,...)
for nouns. Finding the ideal length for the pre- and suffix was done experimentally.
If the affixes are too short, the relative frequencies do not vary a lot among the
different parts of speech, and if they are too long they become essentially the whole
word, which also reduces their usefulness. Of course it would also be possible to
keep statistics of affixes of variable length. Because the solution with fixed-length
affixes proved to be effective already, this was not attempted.

2.4.3 Tag conversion

As mentioned above, the STTS tag set contains 54 tag types. We found that by
combining some of these tag types, e.g. combining all 12 verb types into one,
we achieve better performance on the resulting tag set. The simplified tag set
consists of 23 part of speech types (see Appendix A). Performing this conversion
on output (i.e. the POS tagger is trained on the original tag set and just outputs
the corresponding simpler tags while tagging) results in slightly better performance
than performing it before training (i.e. the POS tagger is trained on the simpler
tag set), see table 2.4. Even though the performance on this simpler tag set is
better, chunking (see chapter 3) performs better on the original tag set.

2.5 Results

We evaluated the POS tagger on the TiiBa-D/Z corpus. The corpus consists of
ca. 65,000 annotated sentences. Table 2.1 shows the performance of the tagger
depending on the number of sentences used for training, with the rest of the corpus
used for evaluation respectively. We see that we are close to the maximum per-
formance when training with 32.000 sentences (or ca. 50% of the corpus) already.
Also the percentage of unknown words remains relatively stable around 8% with
a training set larger than half of the corpus. The following results are all based on
a training set of 55.000 sentences (84% of the corpus).

The results in this section are based on the tokenization as provided by the
treebank. When performing tokenization using the JET tokenizer we observe a
misalignment of 0.19% of the tokens.

Table 2.2 shows how the pre- and suffix length that is taken into consideration
affects the accuracy. We see that generally, suffixes are more important, but
keeping statistics about prefixes increases the performance compared to the best
performing configuration with just suffix statistics. Keeping no statistics about
affixes results in an accuracy of 95.07%. Keeping just statistics about suffixes of
length 3 we can increase the accuracy to 95.66%, while the best performing prefix

Sentences used | Percentage | Accuracy | Unknown
for training of corpus | (%) words (%)
1.000 1.5 89.5 30.4
2.000 3.1 91.7 24.9
4.000 6.1 92.9 20.5
8.000 12 94.1 16.6
16.000 24 94.7 13.4
32.000 49 95.4 10.5
48.000 73 95.7 8.8
55.000 84 95.5 8.7
60.000 91 95.7 8.3

Table 2.1: Performance of the POS tagger depending on training set size

length 4 only increases the accuracy to 95.32%. The best combination of pre- and
suffixes, 6 and 3, respectively, results in an accuracy of 95.77%.

Prefix length

Suffix

length 0 1 2 3 4 5t 6 7
0 95.07 | 94.69 | 94.87 | 95.25 | 95.32 | 95.3 | 95.29 | 95.21
1 94.74 | 94.32 | 94.52 | 95.0 | 95.04 | 95.0 | 94.99 | 94.92
2 95.15 | 94.88 | 94.4 | 95.21 | 95.35 | 95.31 | 95.33 | 95.27
3 95.66 | 95.2 | 95.32 | 95.65 | 95.72 | 95.73 | 95.77 | 95.73
4 95.65 | 95.25 | 95.3 | 95.61 | 95.67 | 95.65 | 95.69 | 95.68
5 95.62 | 95.25 | 95.28 | 95.6 | 95.62 | 95.59 | 95.65 | 95.63
6 95.48 | 95.17 | 95.19 | 95.52 | 95.56 | 95.53 | 95.52 | 95.5
7 95.36 | 95.04 | 95.1 | 95.44 | 95.47 | 95.45 | 95.45 | 95.4

Table 2.2: Influence of prefix and suffix length on accuracy (using full STTS tagset)

In table 2.3 we see the performance gained from keeping statistics about affixes,
compared to a basic HMM and a HMM that just keeps statistics about word
features for the estimation of unknown word probabilities, as used in JET’s English
HMM tagger.

Finally, in table 2.4 we compare the best performing configuration of the JET
part of speech tagger to the published performance of state-of-the-art systems for
German POS tagging.

10

| System | Accuracy (%) |

Basic HMM 90.16
HMM + word features 91.81
HMM + word features -+ affix statistics 95.77

Table 2.3: Increased accuracy by keeping statistics about word features and affixes

| System | Accuracy (%) |
TnT 96.70
TreeTagger 97.53
JET with STTS 95.77
JET trained on full STTS, out- 97.70
putting the simple tag set
JET trained on simple tag set 97.03

Table 2.4: Comparison to state-of-the-art systems (numbers for systems other than
JET from [3])

11

Chapter 3
Chunking

After tagging the words of a document with their parts of speech, the next step is
assigning a syntactic structure to the sentences. A sentence can be represented as
a syntactic tree, and identifying this tree is called parsing. Parsing is a complicated
problem, and for many language processing tasks, including ours, full parsing is
not necessary. A less complex, faster alternative is identifying flat, non-overlapping
and non-recursive segments of the sentence that contain the parts of speech that
we're most interested in, such as nouns or verbs, as a head (i.e. rightmost word).
This process is called chunking, and the segments are called chunks. Because
the chunks are not overlapping, they can easily be illustrated using a bracketing
notation, such as:

| vc'The morning flight| [pcfrom| [ycDenver| [y chas arrived.|

Here, NC stands for noun chunk, PC for prepositional chunk and VC for verb
chunk. Note that, because chunks are non-overlapping, these chunks are not nec-
essarily whole phrases: the prepositional phrase in this sentence for example would
include Denver. This example, as well as a more in-depth explanation of chunking
can be found in [9].

3.1 The JET chunking component

The JET chunker is an IOB tagger. IOB tagging is a standard approach for
chunking that views the chunking process as a sequential classification, similar to
part of speech tagging [9][14]. In IOB tagging, every word is tagged with one tag:
either as a beginning (B) or an internal (I) part of a chunk, or as being outside
(O) of any chunk. For the German chunking task, we extended the JET chunker
with the ability to tag more than one category of chunks. Chunks are then tagged
as B-X or I-X, where X is the chunk type.

12

The chunker finds the most likely sequence of IOB tags using a maximum
entropy model, based on the open source Apache OpenNLP library’s GISModel
class [13].

3.2 German chunks

In general, chunking can be applied to German. There is one non-trivial problem
that does not exist in English, though: In German, pre-head modifiers in noun
phrases can contain noun and prepositional phrases. This means there is a re-
cursive structure that cannot be represented by chunks. The following excerpt
provides an example (from [10]):

|noder [veseinen Sohn| liebende Vater]

Kiibler et al. [10] propose a solution: the embedding noun chunk is split up
and a new type of chunk is introduced, the ’stranded noun chunk’ (sNC), so that
the excerpt above would be tagged as:

|sveder| [yeseinen Sohn| [ycliebende Vater|

This way we again have a non-overlapping chunk structure. The authors of the
before mentioned paper provided us with a version of the TiiBa-D/Z corpus where
the syntactic trees are converted into a chunk structure according to these rules.

3.3 Tag conversion

The TiiBa-D/Z based chunk corpus from Kiibler et al. marks 18 different chunk
types: besides noun chunks also finite and infinite verb chunks, adjectival and
adverbial chunks and others. Additionally some of these chunk types have sub
types for named entities such as persons, locations or organizations. Prepositional
phrases are marked as one single chunk, such as in this example:

|[pcIn einer anonymen Anzeige| |y orrywerden| [ycoder Bremer
Staatsanwaltschaft| [ycDetails|[pciiber dubiose finanzielle Transaktionen|

|vorrvmitgeteilt].

For our purposes, we are mainly interested in identifying noun chunks. It is
therefore more useful to identify the noun phrases inside prepositional phrases as
noun chunks than tagging the whole prepositional phrase as a prepositional chunk.
We transformed the chunk corpus, so that the above sentence is represented as
such:

13

[pcIn| [yceiner anonymen Anzeige| [y orrywerden| [yoder Bremer
Staatsanwaltschaft| [ycDetails|[pciiber| [yedubiose finanzielle Transaktionen|

|verrnmitgeteilt].

As our goal is just identifying noun chunks, we have two possibilities: either we
train the chunker on just the noun chunks, or we train the chunker on more chunk
categories, but only let it output noun chunks. We tested four different training
sets where the following chunk categories were annotated (listed in decreasing
number of chunk categories):

e All chunk types, including the subtypes for named entities

e All chunk types, not including the subtypes for named entities (these were
merged into their parent category, i.e. mainly NC)

e Just noun, verb, and "other" chunk type (the different verb chunk categories
were merged into one, and all other categories were merged into the category
"other")

e Just noun chunk type (all other chunk categories were treated as outside of
any chunk)

For all of these configurations, the output of the chunker was just the noun
chunks. The model with the most chunk categories performed best (see section
3.4). We therefore observe that even if we care about only one chunk category, it
is worth training on a more complicated model.

3.4 Results

The chunker was evaluated on the TiiBa-D/Z corpus using the evaluation script
for the CoNLL-2000 shared task [18]. We only discuss the performance on noun
chunks in this section, as we are not interested in other types of chunks for our
task at hand.

We used 15.000 sentences for training. The OpenNLP GISModel class [13]
needs memory proportional to the size of the training corpus to generate the
maximum entropy model, making it not feasible to train it on a larger part of
the corpus. But we found that the performance does not increase by a large
margin any more when using a larger training set than 10.000 sentences (see table
3.1).

In table 3.2 we present the dependency of the chunking performance on the
part of speech tags used by the chunker. We see that despite the better POS

14

Table 3.1: Performance of the chunker on noun chunks with different sizes of

Sentences used

. . Precision | Recall | F-measure
for training
10 | 67.70% | 74.94% 71.14
100 | 88.04% | 90.33% 89.17
1.000 | 92.55% | 92.79% 92.67
5.000 | 94.23% | 94.27% 94.25
10.000 | 94.62% | 94.64% 94.63
15.000 | 94.87% | 94.82% 94.85

training sets (using perfect part of speech tags)

‘ POS tags ‘ POS accuracy ‘ Precision ‘ Recall ‘ F-measure ‘
perfect POS tags 100% 04.87% | 94.82% | 94.85
from corpus
POS tags from tagger,
full STTS tag set 95.77% 91.44% | 91.86% 91.65
POS tags from tagger, | g7 7q0 89.32% | 90.19% | 89.75
simple tag set

Table 3.2: Performance of the chunker on noun chunks using different part of

speech tags

accuracy when using the simple tag set, the chunker performs better on the full

STTS tag set.

Finally, in table 3.3 we present the performance of the chunker on noun chunks
using different training sets. We see that training the chunker on all chunk tags

available in the corpus results in the best performance on noun chunks.

‘ Trained on ‘ Precision ‘ Recall ‘ F-measure ‘
all chunk tags 91.44% | 91.86% 91.65
no named entities | 90.71% | 91.03% 90.87
noun/verb/other | 90.37% | 90.83% 90.60
only noun chunks | 90.51% | 90.61% 90.56

Table 3.3: Performance of the chunker on noun chunks with different chunk train-

ing sets (using POS tags from the tagger, full STTS tag set)

15

Chapter 4

Patents

Our training data for part of speech tagging and noun chunking is newspaper text
and in the previous chapters the evaluation was done with data from the same
corpus. When training and test data is very similar, there is always a danger that
overfitting gets rewarded [3]. As the final objective of this project is to extract
information from patent documents, we have to compare the language used in
patents with the language used in our training corpus. We were provided with
a corpus of 500 patents in XML format for testing. We do not have German
patents that are annotated with part of speech tags, therefore we can not report
the accuracy of the POS tagger on German patents. We did annotate a patent with
531 noun chunks though and got a precision of 84% and recall of 88% (F-measure:
86%). Compared to the newspaper text, there is a higher number of unknown
words: while testing on the TiiBa-D/Z corpus results in ca. 8% of unknown
words, patents have an average rate of unknown words >20%. A high number of
these unknown words are compound nouns, not surprising given the bureaucratic
language in patents. Another stumbling block for the newspaper-trained tools
is the high frequency of numbers occurring in patents: not only are paragraphs
numbered in many patents, but numbers also refer to claims and figures, and
constructs such as 'DE 31 35 043 C2’ refer to other patents. Often, numbers in
parentheses are appended to nearly every noun, if they refer to certain parts of an
attached drawing.

4.1 Processing of patent documents

We perform the following actions on a patent document:

1. The relevant portions of the patent are extracted using XPath and each
saved into their own JET Document object. A patent consists of a title, an
abstract, a description and a list of claims. Abstracts in German are not

16

present in every document, but there is an English abstract and title for
every patent. Currently we do not make use of the English texts, but in the
future it is possible that a cross-validation between the English and German
components could be made using the English abstract. The XML files also
contain a lot of information that we don’t consider at the moment, such as a
list of inventors and right holders, legal events, etc. By storing each section
of the patent in its own Document object, it is possible to perform different
actions or assign different weights to each section. Currently all sections are
treated equally though.

. Part of speech tagging is performed on each section of the patent.
. Noun chunks are identified.
. Terminology is extracted (see chapter 5)

. Hearst patterns are extracted (see chapter 6)

17

Chapter 5

Terminology extraction

Terminology extraction is the task of identifying terms in a document that are
specific to the document’s domain. In English, this is a difficult problem, because
terminology often consists of multi-word terms. We found that for our task at
hand - extracting terminology from German patents - identifying single-word terms
already brings promising results. Hong et al. [8] find that depending on the
domain, from 57% and up to 94% of all terminology is single-word terms. Our
very simple method for detecting terminology in patents works as follows:

1. For each word tagged as noun in the patent, check if it occurred in the
training corpus of newspaper articles. If not, it is a candidate for being
terminology.

2. If a candidate for terminology occurs a second time in the same patent, it is
considered terminology.

The reason that terminology in German tends to consist of only one word
is the formation of compound nouns. While English compound nouns are more
often than not separated by a space, German grammar allows combining arbitrary
nouns into new compound constructs. Our observations suggest that in patents
new compound nouns are formed even more than in average German texts.

In the corpus of 500 patents, this method extracts on average about 150 words
as candidates and 50 words as terminology, of which almost all are compound
nouns. This number might be a bit high, i.e. not all of these terms would actually
be considered terminology by a rigid definition. But considering the simplicity of
the method, the results are promising.

18

Chapter 6

Hearst patterns

One particular semantic relation which we are interested in extracting is the EX-
EMPLIFY relation: whether one term is a subtype or instance of another term.
Marti Hearst was one of the first to describe how such hyponymy relations might
be extracted from (English) text using a set of patterns, now referred to as Hearst
patterns [7]. The idea is simply to look for certain strings that often indicate a
hyponym /hypernym relation. If there is a noun phrase to the left and to the right,
it is assumed that these two noun phrases are in such a relation to each other. We
implemented a corresponding set of German patterns as a demonstration of how
our linguistic analysis (POS tagging and chunking) could be used. The following
patterns are considered:

] English ‘ German ‘
NP as for example NP | NP wie zum Beispiel NP
NP is a NP NP ist einfe] NP
NP such as NP NP wie etwa NP
NP including NP NP einschliefilich NP
NP or other NP NP und andere NP
NP and other NP NP oder andere NP

Table 6.1: Hearst Patterns (from [5])

The drawback of the simplicity is that there is a high degree of false positives;
[5] shows a precision of just 7.7% for Hearst patterns in German encyclopedic
texts. In the corpus of 500 patents, we match in average 2.7 Hearst patterns per
document. The patterns are filtered, keeping only pairs where either the hyponym
or hypernym noun phrase contains a word considered terminology (see 5). There
are on average 1.4 such pairs per document. The precision is about the same as

19

shown in [5] - below 10%. Errors are mostly due to these reasons:

e There are many grammatical constructs that contain the patterns, but do
not indicate a hyponym /hypernym construct. Especially ist ein(e) occurs
often with another meaning, for example with ist taking the role of an aux-
iliary verb: "An der der Vorderseite abgewandten Seite des Abschnitts des
erfindungsgeméifen Abdichtungsprofilstrangs ist eine Klebschicht aufgetra-
gen" ("an adhesive layer is applied").

e Many patents contain references to numbered figures accompanying the doc-
ument. These references are often in the form of (Fig.) X ist ein Y ((fig.) X
is a V'), where X is the number of the figure and Y a description. These pairs
are of course not useful hyponym/hypernym pairs. But on the other hand,
it could be useful to identify the entities that are pictured in the figures, as
they are likely to be important parts of the patent.

Chunking is not a big source of errors - most parts of the Hearst patterns are
correctly identified as noun chunks.

20

Chapter 7

Conclusion and Future work

We have presented how some components of the JET system were adapted to
German. The next step will be to merge the adapted system with the original
English based components. It remains to be seen if some adaptations done for
German will also result in improved performance for English.

As discussed in chapter 5, terminology extraction in German texts provides
some promising advantages as compared to English. The agglutinative nature of
German tends to result in more single word terms [8]|. Single word terminology
is easier to extract than bi- or multinomial terms, as frequency analysis becomes
more straight-forward. A single word appearing only in one text or subject domain
is highly likely to be terminology, while for a multinomial term more features have
to be taken in consideration to decide if it is a candidate for terminology. It is
conceivable that back-translation to English could result in improved performance
even in English terminology extraction. This could be done either with parallel, di-
rectly translated English and German texts, but also for parallel related document
groups, where the documents need not be exact translations.

21

Bibliography

1]

2]

3]

4]

[5]

(6]

17l

8]

9]

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang Lezius, and George
Smith. The TIGER treebank. In Proceedings of the Workshop on Treebanks
and Linguistic Theories, Sozopol, 2002.

T. Brants, R. Hendriks, S. Kramp, B. Krenn, C. Preis, W. Skut, and H. Uszko-
reit. Das NEGRA-Annotationsschema. Negra project report, Universitdt des
Saarlandes, Computerlinguistik, Saarbriicken, Germany, 1997.

E. Giesbrecht and S. Evert. Is part-of-speech tagging a solved task? An
evaluation of POS taggers for the German web as corpus. In Web as Corpus
Workshop (WACS5), page 27, 2009.

G. Gorz and D. Paulus. A finite state approach to German verb morphology.
In Proceedings of the 12th conference on Computational linguistics- Volume 1,
pages 212-215. Association for Computational Linguistics, 1988.

M. Granitzer, A. Augustin, W. Kienreich, and V. Sabol. Taxonomy extrac-
tion from German encyclopedic texts. In Proceedings of the Malaysian Joint
Conference on Artificial Intelligence, 2009.

R. Grishman. Tipster text architecture design. New York University. www-
nlpir. nist. gov/related_projects/tipster/docs/arch31. doc, 1998.

M.A. Hearst. Automatic acquisition of hyponyms from large text corpora.
In Proceedings of the 14th conference on Computational linguistics-Volume 2,
pages 539-545. Association for Computational Linguistics, 1992.

Munpyo Hong, Sisay Fissaha, and Johann Haller. Hybrid filtering for ex-
traction of term candidates from German technical texts. In proceedings of
terminologie et intelligence artificielle, TIA 2001, 2001.

Dan Jurafsky and James H. Martin. Speech and language processing: an
introduction to natural language processing, computational linguistics, and
speech recognition. Pearson Prentice Hall, Upper Saddle River, N.J., 2nd ed
edition, 2009.

22

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

S. Kiibler, K. Beck, E. Hinrichs, and H. Telljohann. Chunking German: an
unsolved problem. In Proceedings of the Fourth Linguistic Annotation Work-
shop, pages 147-151. Association for Computational Linguistics, 2010.

Sandra Kiibler, Erhard W. Hinrichs, and Wolfgang Maier. Is it really that
difficult to parse German? In Proceedings of the 2006 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP 06, pages 111-119,
Stroudsburg, PA, USA, 2006. Association for Computational Linguistics.

M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini. Building a large an-
notated corpus of English: The Penn Treebank. Computational linguistics,
19(2):313-330, 1993.

Tom Morton and Jason Baldridge. Class GISModel.
http://maxent.sourceforge.net/api/opennlp /maxent /GISModel.html.

L.A. Ramshaw and M.P. Marcus. Text chunking using transformation-based
learning. In Proceedings of the Third ACL Workshop on Very Large Corpora,
pages 82-94. Cambridge MA, USA, 1995.

I. Rehbein and J. Van Genabith. Why is it so difficult to compare treebanks?
TIGER and TiiBa-D/Z revisited. 2007.

A. Schiller, S. Teufel, C. Stockert, and C. Thielen. Guidelines fiir das Tagging
deutscher Textcorpora mit STTS. In Draft Universitat Stuttgart Institut fur
maschinelle SprachverarbeitungUniversitat Tubingen Seminar fur Sprachwis-
senschaft, 1999.

H. Telljohann, E.W. Hinrichs, S. Kiibler, H. Zinsmeister, and K. Beck. Style-
book for the Tiibingen treebank of written German (TiBa-D/Z). In Seminar
fiir Sprachwissenschaft, Universitat Tibingen, Germany, 2003.

E.F. Tjong Kim Sang and S. Buchholz. Introduction to the CoNLIL-2000
shared task: Chunking. In Proceedings of the 2nd workshop on Learning
language in logic and the 4th conference on Computational natural language

learning- Volume 7, pages 127-132. Association for Computational Linguistics,
2000.

23

Appendix A

The STTS tag set

The following table shows the 54 part of speech types in the STTS tag set. For our
simplified tag set we merged similar tags, as indicated with the horizontal lines,
resulting in a set of size 23.

|

\ German description

\ English description

examples
|

ADJA attributives Adjektiv attributive adjective [das] grofe [Haus]
ADJD adverbiales oder préadikatives | adverbial or predicative ad- [er fahrt] schnell, [er ist]
Adjektiv jective schnell
ADV Adverb adverb schon, bald, doch
APPR Préposition; Zirkumposition | preposition; left circumposi- | in [der Stadt], ohne [mich]
links tion
APPRART | Priposition mit Artikel preposition + article im [Haus|, zur [Sache]
APPO Postposition postposition [ihm] zufolge, [der Sache]
wegen
APZR Zirkumposition rechts right circumposition [von jetzt] an
ART bestimmter oder unbes- definite or indefinite article der, die, das, ein, eine
timmter Artikel
CARD Kardinalzahl cardinal number zwei [Ménner], [im Jahre]
1994
FM Fremdsprachliches Material foreign language material [Er hat das mit | A big fish
[’ iibersetzt]
ITJ Interjektion interjection mhm, ach, tja
KOUI unterordnende Konjunktion subordinating conjunction um [zu leben|, anstatt [zu
mit zu und Infinitiv with zu + Infinitive fragen]|
KOUS unterordnende Konjunktion subordinating conjunction weil, dafs, damit, wenn, ob
mit Satz with clause
KON nebenordnende Konjunktion | coordinative conjunction und, oder, aber
KOKOM Vergleichskonjunktion particle of comparison, no als, wie
clause
NN normales Nomen noun Tisch, Herr, [das] Reisen
NE Eigennamen proper noun Hans, Hamburg, HSV

Table A.1: The STTS tag set (part 1), from [17]

German description

English description

examples
|

PDS substituierendes Demonstra- | substituting demonstrative dieser, jener
tivpronomen pronoun

PDAT attribuierendes Demonstra- attributive demonstrative jener [Mensch]
tivpronomen pronoun

PIS substituierendes Indefinit- substituting indefinite pro- keiner, viele, man, niemand
pronomen noun

PIAT attribuierendes Indefinit- attributive indefinite pro- kein [Mensch], irgendein
pronomen ohne Determiner noun without determiner [Glas]

PIDAT attribuierendes Indefinit- attributive indefinite pro- [ein] wenig [Wasser], [die]
pronomen mit Determiner noun with determiner beiden [Briider|

PPER irreflexives Personal- irreflexive personal pronoun ich, er, ihm, mich, dir
pronomen

PPOSS substituierendes Posses- substituting possessive pro- meins, deiner
sivpronomen noun

PPOSAT | attribuierendes Posses- attributive posessive pro- mein [Buch], deine [Mutter]
sivpronomen noun

PRELS substituierendes Rela- substituting relative pronoun | [der Hund ,] der
tivpronomen

PRELAT | attribuierendes Rela- attributive relative pronoun | [der Mann ,| dessen [Hund]
tivpronomen

PRF reflexives Personalpronomen | reflexive personal pronoun sich, einander, dich, mir

PWS substituierendes Interroga- substituting interrogative wer, was
tivpronomen pronoun

PWAT attribuierendes Interroga- attributive interrogative welche [Farbe], wessen [Hut]
tivpronomen pronoun

PWAV adverbiales Interrogativ- adverbial interrogative or warum, wo, wann, woriiber,
oder Relativpronomen relative pronoun wobei

PROP Pronominaladverb pronominal adverb dafiir, dabei, deswegen,

trotzdem

PTKZU zu vor Infinitiv zu + infinitive zu [gehen)]

PTKNEG | Negationspartikel negation particle nicht

PTKVZ abgetrennter Verbzusatz separated verb particle [er kommt| an, [er fihrt] rad

PTKANT | Antwortpartikel answer particle ja, nein, danke, bitte

PTKA Partikel bei Adjektiv oder particle with adjective or am [schonsten], zu [schnell]
Adverb adverb

TRUNC Kompositions-Erstglied truncated word - first part An- [und Abreise]

VVFIN finites Verb, voll finite main verb [du] gehst, [wir] kommen [an]

VVIMP Imperativ, voll imperative, main verb komm [!]

VVINF Infinitiv, voll infinitive, main gehen, ankommen

VVIZU Infinitiv mit zu, voll infinitive + zu, main anzukommen, loszulassen

VVPP Partizip Perfekt, voll past participle, main gegangen, angekommen

VAFIN finites Verb, aux finite verb, aux [du] bist, [wir] werden

VAIMP Imperativ, aux imperative, aux sei [ruhig]

VAINF Infinitiv, aux infinitive, aux werden, sein

VAPP Partizip Perfekt, aux past participle, aux gewesen

VMFIN finites Verb, modal finite verb, modal diirfen

VMINF Infinitiv, modal infinitive, modal wollen

VMPP Partizip Perfekt, modal past participle, modal gekonnt, [er hat gehen| kon-

nen

XY Nichtwort, Sonderzeichen non-word containing special 3:7, H20, D2XW3
enthaltend characters

3, Komma comma, ,

$. Satzbeendende Interpunk- sentence-final punctuation 71
tion

$(sonstige Satzzeichen; satzin- | other sentence internal punc- | - [,]()

tern

tuation

Table A.2: The STTS tag set (part 2), from [17]

25

Appendix B

Example of terminology and hearst
patterns extracted from a patent

B.1 Patent text (excerpt)

Gegenstand der Erfindung ist ein System mit einer Mehrzahl von Schlgssern (2),
deren Riegel jeweils mittels eines Schliissels oder elektromotorisch ver- oder en-
triegelbar sind, wobei bei Bewegung des Riegels in die Schliefstellung mittels
eines schliisselbetétigten Schliefizylinders zuvor die Riegel der anderen Schldsser
motorisch verriegelt werden. Nach dem Verschlieften aller zum System gehori-
gen Schldsser wird eine Einbruchmeldeanlage scharf geschaltet. Die Schlosser (2)
und/oder Verteiler, von denen Leitungen zu Schlossern und/oder Gebern (9, 10)
und/oder von Hand betétigbaren Tastern (12) bzw. Schaltern verlaufen, sind mit-
tels einer wenigstens einen Prozessor aufweisenden Schaltung als Teilnehmer an
einen gemeinsamen Bus (16) eines Netzwerks ausgebildet.

B.2 Terminology (excerpt)

S10 Endschalter Ubertragungsleitung Taster Alarmmeldung Prozessor Geber Teil-
nehmerschaltung Blinken Ubertragung Gebers Reed-Kontakt Schaltzustand Relais
SteuereinheitPlatine Motorblockschlofs Tastern Bauelemente SO1 Aktoren Schliefsstel-
lung DIP-Schalters Spule Hierdurch Profilzylinderkerns Riegels Schliefzylinderk-
erne Baugruppe Steuereinheiten Zeitabstdnden Zufallszahl Abfrage Autorisierung
Sy DIP-Schaltern Blockschlosses DIP-Schalter Kom Tiirblatt Gebdudebereichen
Einbruchmeldeanlage Tiirraum Schliefnasen Steckverbinder Informationsiibertra-
gung V-Netzes Autorisierungs-Routine Schliefzylinder Programmiergerét Schlosses
Koppelelemente Spannungsversorgung Betriebsspannung Teilnehmerschaltungen
Detektoren Informationssignale EMA Profilzylinderkerne Schliefnase Identifizier-

26

nummer Elektromagneten Schlofiriegel Verriegelungsstellung Tiirverteilern Teil-
nehmers Personal-Computer Identnummer Sabotagemeldung

B.3 Hearst patterns

jeden Gebéudebereich:eine eigene Steuereinheit (ist eine)

17:eine Steuereinheit (ist eine)

ibertragbare hochfrequente Signale:der 220 V-Netzleitung (und andere)
diesem System:eine zentrale Steuereinheit (ist eine)

dieser Alternative:eine Steuereinheit (ist eine)

des einen oder anderen Profilzylinderkerns:des einen oder anderen Profilzylinderk-
erns (oder andere)

der Tiirzarge:ein Reed-Kontakt (ist ein)

jeden Gebéudebereich:eine eigene Steuereinheit (ist ein)

5:ein Geber (ist ein)

Bus:eine Steuereinheit (ist ein)

Bus:eine Steuereinheit, (ist eine)

dieser Alternative:eine Steuereinheit (ist ein)

diesem System:eine zentrale Steuereinheit (ist ein)

17:eine Steuereinheit (ist ein)

24:ein Deckelkontakt (ist ein)

27

